2024/05/26
pytorch torch.optim.lr_scheduler 调整学习率的六种策略 1. 为什么需要调整学习率 在深度学习训练过程中,最重要的参数就是学习率,通常来说,在整个训练过层中,学习率不会一直保持不变,为了让模型能够在训练初期快速收敛,学习率通常比较大,在训练末期,为了让模型收敛在更小的局部最优点,学习率通常要比较小。 2. 学习率的初始值设置 其实,不同的任务学习率的初始值是需要试验几次来获得的,使用的优化器不同,mini-batch 的 batch_size 大小不同,学习率的初始值也不太相