报名热线:

0898-08980898

个/性/化/教/育/行/业/领/跑/者

天辰注册

CURRICULUM

天辰APP下载

0898-08980898

广东省清远市

123456789

天辰新闻 >更多
天辰新闻

当前位置: 首页 > 天辰新闻

Python-实战:基于鲸鱼WOA的VMD超参数优化

2024/08/12

目录

1 原理

2 实战

2.1 原始时间序列

?2.2 直接设置参数进行VMD分解

?2.3 WOA优化VMD超参数

?2.4 利用优化的参数进行VMD分解

?3 代码


在VMD--变分模态分解的使用中,他的k和alpha对分解结果影响很大,大量文章对这两个参数进行 了优化选择,比如通过分析模态的fft频谱,有通过优化算法的优化选择,网上也有少量matlab案例,但python的基本上没有,针对这个,本人写了一个python版本的。

时间序列越复杂,样本熵SE的计算值越大,反之亦然。因此,应用VMD对信号进行分解后,计算每个子序列的SE值,SE最小的序列为所分解序列的趋势项。

当分解数K较小时,可能导致信号分解不足,趋势项中混入其他干扰项,导致SE值变大。当取适当的K值时,趋势项的SE变小。因此,将分解出的IMF中的最小的那个熵SE(局部样本熵)最小化时,VMD分解为最佳

当然样本熵有其局限性,所以目前又有很多方法,比如最小化包络熵、最小化谱相关峭度等,本文依旧以最小化局部样本熵为出发点编程

 
 
 

? ? ? ? 由于我们是最小化局部样本熵,所以适应度曲线是一条下降的曲线

最优的k和alpha为9和65

 
 

看我的博客评论区

关于天辰娱乐 /ABOUT US
天辰最安全、信誉、快捷的娱乐【skype:zhumeng1688】,是亚洲极具公信力的娱乐游戏公司,以互联网技术为基础,引进海外高科技人才,天辰公司自主研发了基于playcraft引擎的H5网页版游戏,致力于带给天辰平台玩家最新颖、最高效的服务与娱乐体验。...

友情链接:

微信平台

手机官网

网站首页| 关于天辰娱乐| 天辰注册| 天辰新闻| 天辰注册| 天辰登录| 天辰平台| 天辰APP下载| 天辰代理加盟|

平台注册入口